
353 

Contribution to the theory of cellular thermal convection 
By ENOK PALM? A N D  HENRY 0 I A N N  

Institute of Mechanics, The Technical University of Norway, Trondheim 

(Received 11 Bebruary 1963 and in revised form 3 February 1964) 

In  a previous paper on cellular thermal convection (Palm 1960) the importance 
of the effect caused by temperature variation of kinematic viscosity was pointed 
out. It was demonstrated that this effect would, owing to non-linear interactions, 
lead to a tendency towards hexagonal cells. For mathematical simplicity, only 
the interaction of two wave-components was taken into account. 

Segel & Stuart (1962), working with the same equations, have examined the 
stability of the various equilibrium solutions. They arrive at the important 
conclusion that a necessary condition for the solution corresponding to hexagons 
to be stable is that the variation of viscosity with temperature be sufficiently 
great. 

In the present paper the problem is discussed from a somewhat more general 
point of view. First it  is shown that, when the variation of viscosity with tem- 
perature is sufficiently great, the solution corresponding to hexagons is the only 
stable one if only two wave-components are taken into account. To examine if 
this result is also true when the motion consists of an arbitrary number of wave- 
components, the case of three wave-components is studied. It turns out that in 
this case also the only possible mode is the pattern consisting of hexagons. The 
validity of this result is easily extended to a more general class of wave- 
components. It is shown that the solution corresponding to hexagons is stable 
for all small disturbances which can possibly occur. To prove this it is necessary 
to take into account non-linear disturbance theory. 

A reasonable conclusion from the paper by Segel & Stuart and the present 
paper is that a hexagonal pattern is observed only when a condition of the 
form (6.9) is fulfilled. Experiments coiicerning this problem are, however, 
lacking. 

1. Introduction 
In  a recent paper on cellular thermal convection (Palm 1960), the problem of 

why hexagons are preferred cells was discussed. As is well known, the linearized 
equations do not give any answer to this problem: when the critical Rayleigh 
number is attained, all waves satisfying 

kz+lz = r2 (1.1) 

start to grow according to linear theory. Here JG and 1 are the wave-numbers in 
the horizontal x- and y-directions, respectively, and r2  is a quantity depending 
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on the nature of the boundary conditions. For 'free ' boundaries (characterized 
by zero vertical velocity, zero shear stress and specified temperature), as was 
assumed in the paper referred to, 

r2 = +(n/h), = &I2, (1.2) 

with h denoting the depth of the fluid layer. Hence, as long as the linearized 
equations govern the motion, this will be very complex and display no sign of 
regularity. It is therefore obvious that for the problem in question non-linear 
equations must be taken into account. 

In  order to give a complete solution of the problem, the initial motion should 
have been composed of an arbitrary distribution of waves satisfying (1.1). This 
leads to a very complicated mathematical problem, and, for mathematical 
simplicity, it  was assumed in the paper mentioned above that the initial motion 
(i.e. the initial value of the vertical velocity) consisted nzainly of one two- 
dimensional Fourier-component 

A,,, cos 2Zy sin hz (4Z2 = r 2 ) .  (1.3) 

In addition, the initial motion also consisted of the other waves satisfying ( l . l ) ,  
this part of the wave-spectrum , however, being of much smaller amplitude. 
The problem then arose as to whether it was possible to find any non-linear 
mechanism which would change the initial (approximate two-dimensional) 
motion into a hexagonal cellular pattern. Hexagons are composed of the two 
Fourier-components 

A,, cos kx cos Zy + A,, cos 21y (k2  = 317, (1.4) 

where A,, = 2AOZ. (1.5) 

Thus the problem was reduced to investigating whether a (non-linear) coupling 
term existed which wouId lead to the wave-component 

A,,,(t) cos kx cos Zy sin hz (k2  = 31'9, (1.6) 

being the only preferred component of the group (l.l),  such that A,,,-+ 2A02, as 
t+co. 

It turned out that such a coupling term existed if the effect of the variation of 
viscosity with temperature was taken into account. The kinematic viscosity v 
was written in the form 

v = vo + y cos [ (h/P) (0 + S)] = vo + y cos h z  + (yh/P) 6' sin hz, (1.7) 

where y/vo 4 1. /? denotes the initial uniform temperature gradient, O(z,  t )  the 
mean temperature, and O(x, y, z, t )  the departure of the temperature from this 
mean. The differential equations for the amplitudes Alll(t) and Aozl(t) were then 
found to be, correct to the third-order terms,? 

a 1 1  = 4 1 ,  - ~ ~ , l , A O , , - ~ ~ : , ,  - ~ ~ l , l A ; 2 , 7  

KA,,, = €AOZl - &A;,, - RIA!,, - +PA;,1A021. 

(1.8) 

(1.9) 
t The coefficients of the third-ordor terms in (1.9) were incorrectly given in Palm (1980). 

They are given in a corrected form in the paper by Segel & Stuart (1962). The notation 
applied here diverges slightly from that applied in their paper. 
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Here overdots denote differentiation with respect to time, K is the thermal 
diffusivity, 

E = gaA/3r2, (1.10) 

(1.11) a: = (hy/8) (3r4 - r2h2 + 3h4) 

is the coefficient of expansion, Ap is the difference between the actual initial 
temperature gradient /3 and the critical initial temperature gradient for the 
onset of convection Po. Ap/p0 is assumed small compared to unity, 

h K V 2  

2r2 
R = R(k, 1) = __ [l2P1 + ak2G/M] 

+---- -~ -+- 2 r 2 ]  (1.12) k2(G/M + E2h/Kar2) 
12 + A2 h K a  ' 

R, = &ga:po?+2/K2iT, 

P = 4R-R,,  

G = ( 16hk212/r4) [ ~ a ( l ~  + h2) +,8gar2/4~a], 
M = 6 4 ~ ~ 0 ( 1 ~  + h2)3 - 4ga@0l2, 

C+ = k2 + l 2  + h2, 

(1.13) 

(1.14) 

(1.16) 

(1.16) 

( 1 . 1 7 )  

(1.18) 

h' = ( K  f V o )  a', (1.19) 

a ~ 1 1 1 - 4 0 2 1  and w;,, (1.20) 

UA,,, < 0. (1.21) 

We notice that the two terms in equations (l.S), (1.9), 

are coupling terms which are destabilizing when 

It is seen that only wave-components for which k2 = 312 give rise to such terms. 
The terms (1.20) are therefore of the required type. Since both of the terms (1.20) 
are destabilizing when (1.21) is fulfilled, the destabilizing effect is mutual. In  
order that the final motion shall have a hexagonal pattern, (1.5) must be fulfilled 
when t+co. It is readily seen that (1.8), (1.9) really contain such a stationary 
solution. ((1.8), (1.9) also have other stationary solutions, as pointed out by 
Segel BS Stuart 1962. This will be discussed later in the paper.) 

To investigate the meaning of the relation (1.21), we first mention that if (1.21) 
is fulfilled initially, it  is also fulfilled for subsequent times, as seen from (1.9). 
Therefore, by choosing the frame of reference properly, we are always able to 
ensure that (1.21) is satisfied for all times. This relation determines the sign of 
A,,, and therefore the direction of circulation in the hexagons. Hence, for fluids 
in which v increases with temperature (a  positive) the flow descends in the middle 
of the cell and for fluids in which v decreases with temperature (a negative) the 
flow ascends in the middle of the cell, in accordance with experiments. 

It is of interest to note that if the frame of reference is displaced a distance 
4nl-l along the y-axis, the results given above imply that the wave-component 
(1.3) and the wave-component 

All,($) cos X-x sin ly sin Ax (1.22) 
23-2 
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are mutually destablizing for all times when 

aA,,, > 0. 
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(1.23) 

Honce, if the frame of reference is chosen beforehand, the wave-components (1.3) 
and (1.6) reinforce each other for all times when (1.21) is fulfilled, whereas the 
wave-components (1.3) and (1.22) reinforce each other for all times when (1.23) 
is fulfilled. This matter will be discussed somewhat more in the next section. 

Before proceeding to the next section, it should be pointed out that only the 
variation of v due to the motion (i.e. the term (?Alp) 0 sin hz in (1.7)) gives rise 
to the terms proportional to a in (1.8) and (1.9). 

2. Comments on the initial motion 
In  Segel & Stuart (1962), the various equilibrium solutions of (1.8), (1.9) are 

discussed, and the stability of these solutions are examined. We now summarize 
their principal results concerning the stability of the equilibrium solutions: 

(i) The equilibrium solution corresponding to hexagons is stable for infini- 
tesimal disturbances when (1.21) is fulfilled and a as sufficiently large. More 
precisely, the condition that this solution be stable is that 

a2c--1 > 4(2R - R,)2/(4R + Bl). (2.1) 

(ii) Even though this condition is satisfied, the solution corresponding to 
hexagons is not the only one. The equations also possess a stable equilibrium 
solution corresponding to two-dimensional rolls in this domain. 

We shall, however, show in the next section that this last result is incorrect. 
It may therefore be concluded that the solution corresponding to hexagons is 
the onZy stable solution when a 2 c 1  is sufficiently large. 

In  order to get some information about what determines the location of the 
hexagons, we return to a discussion of the initial motion chosen above. It is 
evident that if, instead of the wave-component (1.6), we consider the wave- 
component 

the final motion will consist of hexagons displaced a distance &rE-l along the 
x-axis compared to the first system of hexagons. In  a real fluid both the wave- 
components (1.6) and (2.2) are present, and it is readily shown that the final 
motion will consist of hexagons, the centres of which are determined by the 
relative magnitudes of the initial values of the amplitudes A,,, and B,,,. If, 
instead of (1.6), we consider the wave-component 

B,,, sin kx cos ly  sin hz ( k2 = 31,)) (2.2) 

C,,, cos kx sin l y  sin Ax (k2  = 312)) (2.3) 

we obtain, as is easily seen by displacing the frame of reference a distance &rr1-1 
in the y-direction, the same equations as (1.8) and (1.9) except that the terms 
proportional to a change sign. We may without any loss of generality assume that 
aA,,, is initially negative. The two terms (1.20) are then initially stabilizing. 
However, if a 2 c 1  is sufficiently large, the second terms on the right in (1 .8), (1.9) 
determine the development of A,,, and A,,,, and it is readily seen that in this 
case A,,, changes sign. We therefore end up with hexagons satisfying (1.23). 
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This may also be concluded from figure 2 in the paper by Segel & Stuart. The 
hexagons obtained by this wave-component and (1.3) are displaced a distance 
&r-1 along the y-axis compared to those defined by (1.6) and (1.3). If both the 
wave-components (1.6), (2.3) are present simultaneously, i t  may be shown that 
the final motion will be hexagons, located either as those determined by (1.6) 
and (1.3) or as those determined by (2.3) and (1.3), depending on the relative 
magnitude of the initial values of the amplitudes. 

An arbitrary wave-component of the group (1. I ) ,  

A;,,(t) cos k’z  cos Z’y sin h z  (k12 + %I2), (2.4) 

does not combine with (1.3) in such a way that the equations contain terms 
proportional to a. If all the three wave-components (1.3), (1.6), (2.4) are present 
simultaneously, it  is found that the development of A;,,(t) is governed by the 
equation 

Here R’ = R(k’, l‘), (2.6) 
(2.5) 

(2.7) 

KAill = “A;,, - R’A& - XA2,,,A~,, - TAi2,A;,,. 

x = X(k,Z)+X(-k,Z)+X(k,  - Z ) + S ( - k ,  -l)+R,, 

(r2 - kk‘ - Z1’)2h2 
32r4 

where S ( k ,  1)  = 

+ ~~ q@r2 ~ 

2CTK2(CT + h2 + kk‘ + 11.,] ’ 
with 
and 

u = K C (  CT + h2 + kk’ + 11’) f oI&r2/2K(T 

(2.8) 

I t  is noted that all non-linear terms are stabilizing. The presence of the wave- 
component (2.4) will result in a term 

1 = 4KV(CT + h2 -t kk’ + 1i‘)’/(r2 + kk‘ + r/ ‘ )  - a,@, 

T = 4X(O, 21) + 4X(O, - 21) + R,. 

- ~A;2,lAlll 

- & A i ~ l ~ l l l  

being added on the right in ( 1  .S), and in a term 

being added on the right in (1.9). Here Q is given by 

(2.10) 

Q = ‘I’ 2 0‘ (2.11) 

3. Comments on the paper by Segel & Stuart 
As mentioned above, Segel & Stuart show that a necessary condition for the 

solution corresponding to hexagons to be stable, is that the variation of kinematic 
viscosity with temperature be sufficiently large (relation (2.1)). They find, how- 
ever, that equations (1.8), (1.9) also have other stable solutions in this region. 
It is easily seen that the two-dimensional motions 

A,,, = 0, -402, z= k (€/R1)’ (3.1 a ,  b )  

are equilibrium solutions. According to Segel & Stuart, (3 . la )  is stable when 

a€-* > - 2(2R- R,)/Rt ( 3 . 2 ~ )  
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and (3.1 b )  is stable when 
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aa-4 < 2(2R- R,)/Rk. ( 3 . 2  b) 

Hence, even for large values of the variation of viscosity with temperature, 
a two-dimensional stable solution also exists. As will now be demonstrated, this 
result is not correct. 

Segel & Stuart examine the stability of the equilibrium solutions of ( 1  .8), (1.9) 
by introducing an infinitesimal disturbance of the form 

(3.3) 

They prove that the solution (3.1 a )  is unstable for disturbances of the form (3.3) 
when 

&A,,, cos Ex cos ly sin hz + &Aoz, cos 21y sin hz. 

ae-3 < - 2(2R- Rl) /Rt .  (3.4) 

However, if we displace the frame of reference a distance 4nl-l along the y-axis, 
the solution (3.1~3) changes sign ( 3 . l a + 3 . 1  b), and the disturbance (3.3) takes 
the form 

&4,,, cos kx sin 2y sin hz - &Aozl cos 21y sin hz. (3.5) 

We may therefore conclude that the solution (3.1 b )  is unstable for perturbations 
of the form (3.5) when (3.4) is fulfilled. Correspondingly, we find that the solution 
(3.1 a,) is unstable for perturbations of the form (3.5) when 

as-& > 2(2R- Rl ) /Rt .  (3.6) 

> 4(2R - Rl)2/R,. (3.7) 

Hence, the two-dimensional equilibrium solutions (3.1 a, 6) are unstable when 

Therefore, by taking into account a disturbance of form (3.5) in addition to (3.3), 
we obtain a modification of the result found by Segel & Stuart. We notice that 
in the case of sufficiently large variations of kinematic viscosity with temperature 
(relation (3.7)), hexagons are the only stable equilibrium solution. 

The finding of Segel & Stuart that more than one stable equilibrium solution 
exist, seems, however, to be correct when 

a 2 r 1  < 4(2R- R,)2/R,. (3.8) 

We have so far only considered the case when the equilibrium solution consists 
of two wave-components. The important question is whether the result found 
above is also valid in the general case when the equilibrium solution consists of 
an infinite number of wave-components satisfying (1.1). It may first be noted 
that if a = 0 (kinematic viscosity independent of temperature), an infinite 
number of stable equilibrium solutions exist. It is therefore evident that if 
a2e-l is sufficiently small, the final motion is composed of an infinite number of 
modes. To get some more information about the final motion when a2e-l is large, 
we shall in the next section take into account also an arbitrary third wave- 
component, viz. (2 .4 ) .  It will turn out that in this case also the equilibrium 
solution corresponding to hexagons is the only stable one. In  6 5 we shall demon- 
strate that this equilibrium solution is also stable for arbitrary infinitesimal 
disturbances. 
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4. The equilibrium solution composed of three wave-components 
The next step towards a more general investigation of the stability problem is 

to examine the stability of the equilibrium solutions when the three wave- 
components (1.3), (1.6) and (2.4) are present. The equations determining these 
wave-components are 

KA,,, = “A111-aA111Ao21- RA~,,-PA,l,A,2,,-SA;4,A,,,, (4.1) 

K24,,, = “A,,, - &A;,, - RIA:,, - pA;,,A,, l-  &A;;,A,,,, (4.3) 

KA;,, = “A;,,- R’A;~,-SA4,,A;,, - TA,2,,A;,,. (4.3) 

Let us temporarily disregard the solutions corresponding to 

A,,, = 0, 
Ail1 = 0. 

The other equilibrium solutions are determined by 
“ - UA,,, - RA?,, - PA&, - SA;;, = 0, 

eA02,- &4;1,-R,A&,- $PA&,Ao,,-QA;2,,Ao2, = 0, 
E - R’A;;, - XA:,,- TA&, = 0. 

A f g , ,  + BaA,2,, + Ca2A0,, +Due = 0)  

(4.6) 

(4.7) 

(4.8) 

(4.9) 

Eliminating A,,, and A;,,, we obtain 

where A = R,(S’-RR’)+&P(PR’-ST)-Q(PS-RT), (4.10) 

B = 2PR’ - iST  - QS, (4.11) 

C = 4R‘ +EU-~[RR‘ -S~+~P(S-R’ )+Q(S-R)] ,  (4.12) 

D = &(X- R f ) .  (4.13) 

For sufficiently large values of a%-1, (4.9) has two solutions proportional to a. 
According to (4.8), the corresponding values of A,,, and A;,, are imaginary, and 
these solutions must be rejected. The third solution is given by 

&2Ao,, - &( 1 - S/R‘) E = 0. (4.14) 

Hence, A,,1 = Lea-,, (4.15) 

where L = (1 - X/R‘). (4.16) 

The corresponding values of A,,, and Ail, are found to be 
A,,, = 2( 1 - &/R’) Lgsa-l, (4.17) 

A;,, = (E/R’)*. (4.18) 

To investigate the stability of this solution, we introduce the infinitesimal 
disturbances 6Alll, 6A,,,, 6A;,,. We obtain from (4.1), (4.3) and (4.3)) applying 
the equilibrium equations, 

K6killl = -3RA~1,6A,,,- (a+ 2PA0,,)A,,,6A0,,- 2SA1,,A;,,6A;,,, (4.19) 

KSA’,,, = - ($a + PA,,,) A,,, 6A,,, 

+ (w;11/Ao21- 2R,A,2,,) ~A, , , -  ~ & ~ , 2 , ~ ; , 1 ~ ~ ; 1 , ~  (4.30) 

KSA;,, = - 2 X A ~ , ~ A ~ ~ ~ 6 A ~ ~ ~  - 2TAozlA;,, 6AO2, - 2R’A;,,6A;1,. (4.21) 



j - - 2RAf11 - (a + 3PA02,) All, - 2fwll  All, 
I - (+a +PAo2,) A,,, - 3QA;11A021 I - 2~Al1lA;l l  - 2~A021A;11 - a - 2R'A& 

-a+ ~ Q A ~ , ~ / A ~ , ,  - 2Rl A:,, = 0. (4.22) 
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Equations (4.32) and (4.34) reveal that the solution (4.26) is unstable. Hence, 
a pattern consisting of a regular system of rectangles is unstable. 

Thus we arrive at the result that the only possible stable solutions are those 
satisfying (4.5). These solutions were discussed in the previous section. It will 
be shown in the next section that these solutions are also stable for perturbations 
of the type &A;,,. 

It may be of interest to mention that Chandrasekhar (1961) points out that 
an expression of the form 

r y+Bcosr(y-yo) 

where m. is an integer greater than one, appears to be the solution of the linearized 
problem giving the most general cell patterns which exhibit definite periodicities 
in the x- and y-directions. It is noted that A = 2, m = 3, yo = 0 correspond to 
hexagons. 

Itisseenfrom(4.2)and(4.3) (withd = A;,,, B = A,,,,A,,, = A,,, = A,,, = 0 )  
that both A and B are of order e. Introducing a disturbance of the form 

(4.36) 6A,,, cos kx cos I( y -yo) sin Ax (k2  = 3P) ,  

we deduce from (4.1) that 
K6A1,, = dA,,, - uBGA,,, - PBVA,,, - XA26A,,,. (5.37) 

For large values of u2e-l this equation reduces to 
K6A,,, = -uBSA,,,. 

Thus the question as to the stability of the solution (4.35) is reduced to an 
investigation of the stability of the two-dimensional motion which was discussed 
above. We therefore conclude that, if for small values of E a stationary solution 
of the form (4.35) exists (i.e. A and B are real), this solution is unstable for large 
values of u2e-l. 

We have assumed above that u2e-l is sufficiently large, without specifying any 
lower limit. The question arises whether it suffices to consider values of u2e-l 
given by (3.7). No attempt has been made to investigate this matter. It should 
be remembered in this connexion that the boundary conditions applied here 
are somewhat artificial, and the findings above are therefore mainly of qualitative 
value. 

5. On the stability of hexagons 
Even if hexagons are stable for the special disturbances 6A,,, and &Ao2,, they 

may be unstable for other possible disturbances. Since we have assumed through- 
out the paper that AB is small (i.e. the amplitude of the convection is small), it  is 
evident that it is only necessary to take into account disturbances satisfying (1.1). 

(5.1) 

where k2 = 31, and A,,, = 2A02,. According to the above, a necessary condition 
in order that this solution be stable is that (1.21) be fulfilled. There are two classes 

The solution corresponding to hexagons may be written 

A,,, cos kx cos Zy sin hz + A,,, cos 21y sin Ax, 
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of disturbances which we must take into account, viz. disturbances where 
k2 = 31, and disturbances where k2 + 31, (denoted by k' and 1'). We will first 
investigate the former disturbances. 

Let us consider the disturbance 

(6A,,, cos kx cos ly + 6AOZl cos 31y 

+ 6B,,, cos kx sin ly + 6B,,, sin 21y) sin hz. (5.2) 

The equations for the amplitudes SA,,, and SA,,, are found by introducing 

All, + 6Alll9 A,,, + ~Ao, ,  (5.3) 

KSA,,, = - 2RA;,,6Al,,- (a+2PA,zl)A,,,6A021, (5.4) 

K6A0,, = -$(a+2PAo,,)A,,,6A,,,+ ($aA2,,,/A021- 2R,A~,,)6A,,,. (5.5) 

into equations (1.8), (1.9) and applying the equilibrium equations. This gives 

These are the equations that were discussed by Segel & Stuart and commented 
on in § 3. We assume in what follows that the motion is stable for these perturba- 
tions, i.e. that (3.1) is fulfilled. The equations governing 6B,,, and 6BOz1, are 
found by comparison with the derivation of the equations (1.8), (1.9) (see Palm 
1960) to be 

KiSB,,, = (e + aA,,, - RA?,, - PA;,,) W,, - a&, 8Bo2,, 

KaBo,, = - iaA,,,6B,,,+ (e - R,A&,- $PA;,,) sBo21, 

(5.6) 

(5.7) 

where higher-order terms in 6B,,, and 6B,,, are neglected. Because A,,, and 
A,,, are equilibrium solutions of (1.8), (1.9), the equations reduce to 

h'6Blll = 2aA02, 6B111- $All, 6B021, 

K6B,,, = - +aA,,, SB,,, + $aA;,,/A,,, 6Bo,,. 

(5.8) 

(5.9) 

We notice that the determinant of this system is zero. Hence, it may be con- 
cluded that if only linear terms are retained, the solution corresponding to 
hexagons is neutral for disturbances of the form (5.2). 

It should here be emphasized that in many practical problems the occurrence 
of neutral (linear) disturbances involves practical instability, since a slight 
change in the coefficients may lead to instability. It does not seem reasonable 
that this is true in the actual case. A change in the coefficients in the equilibrium 
equations-due to a higher degree of approximation-leads to a corresponding 
change in the coefficients in the perturbation equations. This is, of course, due 
to the fact that the actual disturbance is very much of the same form as the 
equilibrium solution. To decide whether the motion is stable or not, we have 
therefore to take into account non-linear terms in 6B,,, and 6B,,,. It is readily 
shown that the next approximation is obtained by adding the terms 

- R6B&, - P6B& SB,,, 

on the right in (5.6), and the terms 

(5.10) 
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on the right in (5.7). Since all these terms are stabilizing, it seems reasonable to 
draw the conclusion that the motion is stable for the disturbance (5.2). This may 
be shown more rigorously by introducing 

(5.12) 

(5.13) 

and applying the condition that A,,, = 2AO2,. The equations then take the form 

li’6.6 = - &(R + 2P + 2R1) Su3 + . . . , (5.14) 

KS5 = 3aA0,,6v+ ..., (5.15) 

where . . . in (5.14) stands for terms of the form 6u2Sv, Su 6v2, Sv3 and higher-order 
terms, and in (5.15) for higher-order terms. Since do,, is negative, 8v will decay 
and &h3 becomes the important term in (5.14). The coefficient of this term is 
negative; hence the motion is stable. (This may also be shown by constructing a 
Liapunov function, see La Salla & Lefschetz 1961, pp. 49-51.) Correspondingly, 
it  may be shown that the motion is stable for perturbations where coskx is 
replaced by sin kx. 

To examine the stability of the second class of disturbances, it  suffices to 
investigate a disturbance of the form 

SA;,, cos k‘x cos ly’ sin Ax. (5.16) 

It is found from (2 .5 )  that SA;,, is determined by 

(5.17) 

It should here be noted that (5.17) holds true even if other disturbances are 
present since no coupling terms exist between SA;,, and possible other disturb- 
ances (we consider here only linear disturbances). Introducing for € the value 
found from the equilibrium equations, we may write (5.17) as 

K6A;,, = [aA,,, + (R - #)A$, + (P - T) A&,] JA;,,. (5.18) 

Since “A,,, is supposed to be negative, this term is stabilizing. Because 
All, = 2A021, the two other terms on the right are also stabilizing if 

4 X + T - ( 4 R + P )  > 0. (5.19) 

If we write E‘ = ‘r cos q5, (5.20) 

l’= rsinq5, (5.21) 

then (5.19) is a function of 4. A numerical examination of the terms reveals that 
(5.19) is satisfied for all values of q5. Actually, with a very high degree of accuracy, 
the left-hand side in (5.19) is independent of q5 and equal to R,. We therefore 
arrive at the conclusion that the solution corresponding to hexagons is stable 
for this class of disturbances when (1.21) is fulfilled. It should perhaps be pointed 
out that the calculation reveals that the important stabilizing agency is the 
(vertical) temperature convection. 
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6.  Conclusions 
It seems clear, from previous papers (Palm 1960; Segel & Stuart 1962) and 

the present one, that the effect of the variation of kinematic viscosity with 
temperature is most important as regards the final form of the cellular motion 
in thermal convection. 

The present paper is restricted to considering thermal convection where 
(i) the overcritical temperature gradient A/3 is small enough for it to be sufficient 
to take into account only third-order terms, and (ii) the relative variation of the 
kinematic viscosity in the actual temperature region is small, i.e. y/v, is small 
compared to unity. Applying these assumptions, we believe we have proved that, 
when the condition found by Segel & Stuart (2.1) is satisfied, the solution corre- 
sponding to a hexagonal pattern is stable for all small disturbances which can 
possibly occur. To prove this, non-linear disturbance theory had to be taken 
into account. 

The other problem, of whether this solution is the only stable one when a2c1  

is sufficiently large, seems to be far more complicated. We have been able to 
show that the solution corresponding to hexagons is the only stable one when the 
motion consists of the three wave-components (1.3), (1.6) and (2.4). It should 
be emphasized that this result may easily be extended to comprehend n wave- 
components in addition to A,,, and provided the n wave-components do 
not interact in such a way that they give rise to terms proportional to a. This 
last restriction means that the group of waves considered defines only one system 
of hexagons. However, for groups of wave-components defining more than one 
system of hexagons, rotated in relation to each other, the problem is considerably 
more involved. In  order to investigate this case, i t  would be reasonable first to 
study the stability of a group of wave-components which define two systems of 
hexagons, for example the following group: 

where 

A cos (kx + Zy) sin hz, 

B cos (kx - Zy) sin Ax, 

C cos 2Zy sin hz; 

A' cos (k'x + Z'y) sin h z ,  
B' cos (k"x + Z"y) sin hz, 

C'cos[(k'-k")x+ (1'-2")ylsinhz; 
k' = rcos$,, 
I' = rsin$,, 
k" = r cos ($, - Qn), 
1" = r sin (4, - in), 

with $, denoting an arbitrary angle. The first three wave-components (6.1), (6.2), 
(6.3), obviously lead to the system of hexagons discussed above, whereas the 
last three wave-components define a system of hexagons rotated in relation to 
the first one. These six wave-components must therefore contain at least two 
stable equilibrium solutions. Which of these will be realized depends on the initial 
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conditions. If in this case no other equilibrium solutions are found to be stable, 
it  seems very reasonable to draw the conclusion that hexagons are the only stable 
mode when all possible wave-components are taken into account. No serious 
attempt has, however, been made to solve this problem. 

A hexagonal pattern is observed in experiments, a fact which must be inter- 
preted to mean that the hexagonal solution is under certain conditions the only 
stable one. It seems very reasonable to suppose that in the case of realistic 
boundary conditions, a2c1 must be larger than a certain value in order that this 
solution may be observed. Writing Ail instead of y ,  we should therefore expect 
that 

must be larger than a certain number, f say, in order that hexagons be observed. 
It seems reasonable to suppose that f is a function of the Prandtl number, 

P = V / K ,  (6.8) 

only, which is consistent with (3.7).  The condition for observing hexagons should 
then be 

where f depends oiily on the boundary conditions. To the author’s knowledge, no 
experimental results concerning this problem have yet been published. 
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